
Learning to Rearrange Objects in Confined Environments

Alessandro Palleschi∗, Marion Lepert+, Wenzhao Lian#, Lucia Pallottino∗, Jeannette Bohg+

Abstract— Robots capable of rearranging objects in cluttered
and confined spaces have numerous real-world applications,
such as in retail, logistics, and household tasks. However,
environmental constraints and visual occlusions make it
difficult to predict the effects of robot-environment interactions,
presenting a significant challenge for rearrangement planning.
Existing solutions rely on simplified assumptions, such as
full observability, and typically use collision-free, single-object
prehensile manipulation strategies that are less effective in
partially observable settings. To address these limitations, this
paper proposes a data-driven approach that leverages deep
reinforcement learning to learn a rearrangement policy that
combines two actions: pushing and pick-and-place. Specifically,
the approach uses fully convolutional networks and Q-learning
to make dense pixel-wise predictions of expected rewards for the
two actions from side-views of the cluttered and confined space.
At each step, the learned policy executes the action with the
highest Q-value given the current observation. The proposed
method is evaluated in simulation, where a learned policy is
rolled out to rearrange up to 14 objects inside a confined
cabinet. Results show that the approach achieves an average
success rate improvement of 31.7% compared to baselines.
Overall, this work demonstrates the efficacy of a data-driven
approach to enable robots to effectively rearrange objects in
complex, cluttered environments.

I. INTRODUCTION

Enabling robots to operate efficiently in everyday human
environments has been a longstanding goal of robotics
research. However, unlike the structured and controlled
industrial environments where robots have traditionally been
deployed, human environments are often unstructured and
variable. In particular, they are typically cluttered and
constrained, and require robots to interact with and rearrange
objects in the environment to accomplish specific tasks. As
such, developing effective strategies for object rearrangement
in cluttered and confined environments has become an
increasingly important area of research, with applications in
fields ranging from retail and logistics to household tasks.

In this work, we focus on the multi-object sorting problem
where the goal is to manipulate and rearrange objects in a
confined environment such that objects of one category are
grouped together. Many works have addressed the problem of

Toyota Research Institute provided funds to support this work. This
work has also received funding from Intrinsic, the European Union
Horizon 2020 research and innovation program under agreement no. 871237
(SOPHIA), and the Italian Ministry of Education and Research (MIUR)
in the framework of the CrossLab and FoReLab projects (Departments of
Excellence).

∗ Research Center E. Piaggio, Department of Information Engeneering,
University of Pisa alessandro.palleschi@phd.unipi.it,
lucia.pallottino@unipi.it

+ Stanford University, Department of Computer Science {lepertm,
bohg}@stanford.edu

Intrinsic Innovation LLC in CA, USA. wenzhaol@intrinsic.ai

Fig. 1: Schematic representation of the rearrangement
problem. Given a visual observation of a set of objects in a
confined workspace, the robot uses a learned policy to select
actions that bring the environment into a sorted state.

manipulation planning in confined spaces [1]–[5], but most
of them focus on searching for or retrieving a target object.
Thus, they are not concerned with the final arrangement of
the other objects in the environment at the end of the task.
The problem we consider adds more planning complexity
since it represents a long-horizon manipulation problem that
requires manipulating all the objects to reach a specified
goal state. In addition, the presence of occlusions caused by
clutter and uncertainty about the real state of the environment
increase the complexity of this planning problem that is in
general NP-hard [6].

Existing solutions for this problem have been developed
under strong assumptions, such as complete observability and
known object models, relying only on single-object collision-
free prehensile manipulations. However, robots working in
real-world settings have to deal with partially observable and
uncertain environments, potentially interacting with objects
never seen before and with levels of clutter that might hinder
completely avoiding contact with other objects. Strategies
that utilize contact-rich manipulation techniques, such as
pushing, which allow for concurrent multi-object interaction,
have the potential to be more efficient than strategies limited
to single-object manipulation [7]. Nonetheless, planning
a sequence of manipulation actions over a long horizon
in partially observable and contact-rich environments is
challenging due to the complexity of accurately predicting
the effects of an action. Uncertainty about physical object
parameters and the state of the world makes an open-
loop execution of long sequences of actions practically
impossible.

To overcome these challenges, this work proposes to
leverage model-free deep reinforcement learning to learn a
rearrangement policy based solely on visual inputs. Model-
free approaches represent a good solution for reactive
decision-making in uncertain and cluttered environments,
where it might be complex and costly to derive an
internal model for forward planning, since physics in

interaction-rich environments can easily evolve into multi-
modal and non-smooth distributions [3]. In this framework,
the robot can interact with the environment using two
action primitives, pushing and pick-and-place, and learns
rearrangement policies that combine these two actions by
trial-and-error in a deep Q-learning framework. Therefore,
the agent is not limited to collision-free prehensile actions.
Given a partially occluded observation of the confined
environment, the rearrangement policy uses the Q-maps
computed by fully convolutional neural networks to select
and execute the action with the highest Q value at each
time step. We evaluate the performance of the proposed
approach in simulated cluttered environments with up to
14 objects. We show that the learned policy allows the
robot to effectively and efficiently operate in highly cluttered
and partially observable settings, where heuristic-based
baselines are not effective, and demonstrate that combining
pushing and pick-and-place actions increase efficiency and
performance of the learned policy.

The main contribution of this paper is to frame multi-
object sorting with partial observability as an end-to-end
reinforcement learning problem, where the robot learns
how to combine pushing and pick-and-place actions to
sort all the objects based on lateral RGB-D views of the
confined environment. In addition, to allow learning policies
transferable to large varieties of objects with different
geometry and appearance, we propose to describe the state of
the world, i.e., the features used by the network to evaluate
the usefulness of an action, through an abstract image-based
representation that highlights task-relevant information, such
as, class memberships of the observed objects and position
of the target sorting regions.

II. RELATED WORKS

A. Manipulation in confined spaces

Many works focus on grasping objects from cluttered
environments [1], [2], [5], [8], [9] or on searching and
retrieving objects in confined spaces [3], [4], [10]–[13]. Even
though all these works are applied to confined and cluttered
environments and require planning actions to rearrange
objects within the scene, the final arrangement of the objects
is not essential for defining the task’s success. In contrast,
in our setup, the poses of all the objects are relevant as the
goal is to sort the objects to reach a specific arrangement. In
addition, most prior approaches reduce the complexity of the
problem by assuming known object models and poses [2],
[5], [10], [13], and restrict manipulation to one object at a
time to avoid object-object interactions that can be hard to
model [4], [10]–[12].

B. Object rearrangement

The problem addressed in this work is a particular instance
of the object rearrangement problem. The rearrangement
problem has been described as a “canonical task” for
evaluating embodied AI [14], and can be characterized
by the complexity of the considered environment (level
of clutter and containment), the set of actions available

to the robotic platform, and the level of generalization
to novel environments and objects. The problem of
rearranging/sorting objects using both prehensile and
non-prehensile actions has been widely investigated for
planar/tabletop scenarios [7], [15]–[18].

The approach presented in [18] considers long-horizon
rearrangement planning tasks in tabletop scenarios, where
multiple (unknown) objects have to be rearranged to a
specific goal configuration (given in the form of a goal
image). It relies on segmented visual data as input, and
its performance heavily depends on the quality of the
segmentation. In addition, it limits the robot to use only
prehensile pick-and-place actions to reach the desired
arrangement.

Other methods focus instead on large-scale, multi-object
rearrangement, where planar pushing actions are used to
move multiple objects at the same time to increase efficiency.
The approach proposed in [15] exploits iterative local search
and assumes the pusher can move in and out of the pushing
plane at any location. Other works use learning-based Monte
Carlo Tree Search for problems where the pusher’s motion is
constrained to the pushing plane and the goal configuration
is not explicitly given [16], or exploit a kinodynamic
planning framework with dynamic planning horizons [7]. Pan
and Hauser [17] propose a different solution for planning
large-scale object sorting, combining overhead grasping and
planar pushing. They use an analytical method that provides
completeness guarantees under the assumptions that objects
are not pushed to regions not reachable by the robot arm and
that the state is fully observable.

All these methods are restricted to planar workspaces
where the gripper can reach the objects from the top,
and many assume full observability. Their applicability to
confined environments, where the robot can only access
and observe the workspace from the side, is limited.
Environmental constraints reduce the accessibility for
some objects, basically making collision-free manipulation
impossible, and occlusions due to clutter introduce
uncertainty about the true state of the environment. In
addition, most of the proposed methods use a single action,
either grasping or pushing, to perform the task. When
multiple actions are used, the pushing action is mostly used
to enable future grasps and not as a rearrangement action.

Regarding the approaches developed for object
rearrangement in confined spaces, they generally exploit
policies based on collision-free prehensile actions [19]–[21].
These methods are able to solve both monotone (where all
objects need to be picked only once) and non-monotone
(where objects need to be picked multiple times and
relocated inside the confined environments) scenarios.
However, they assume having access to the pose of every
object, i.e., full observability. Moreover, they are often
limited to specific objects, e.g., uniform cylinders with
known dimensions, and the rearrangement policies are
designed to avoid object-object interactions. This latter
constraint would lead to infeasible solutions in many cases
where the clutter could prevent collision-free trajectories.

(a) Confined space (b) Robotic arm

Fig. 2: Setup: (a) cubic workspace with N objects inside,
(b) the robot equipped with a pushing blade with a suction
cup at the end of the tool.

III. PROBLEM STATEMENT

Consider a cubic workspace W ⊂ R3 containing N
movable objects O = {o1, . . . , oN} (see Fig. 2a), and a robot
arm placed in front of the cubic workspace. The robot arm
can observe and access the workspace only from one side
(lateral access). To facilitate manipulation in confined and
narrow environments, the robot is equipped with a pushing
blade with a suction cup at the end of the tool, see Fig.
2b. The robot can interact with the environment using two
parametrized actions: linear pushing using the blade and
pick-and-place through activation and deactivation of the
suction cup. The set of parametrized actions is indicated
with Aρ = {T (ρT),P(ρP)}, where T is a pick-and-place
action, P is a linear pushing action, and ρi represents the
parameters for an action i. The objects inside the workspace
are partitioned into a finite number of k classes. Each of
these classes has been assigned to a specific region inside
the workspace Wk ⊂ W . A sorted state is when the objects
of each class k are inside the target region Wk.

Given these definitions, it is possible to state the
following rearrangement problem: given an initial unsorted
configuration for the objects O inside the workspace W ,
the robot should plan and execute a sequence of pushing
and pick-and-place actions that brings the environment to a
sorted state using observations from a fixed camera placed
in front of the shelf.

IV. PROPOSED APPROACH

We frame this sorting problem as a Markov Decision
Process (MDP): given a state st at time t the agent selects
an action at ∈ Aρ to execute according to a policy π(st). As
a result of this action, the system transitions to the new state
st+1, and the agent receives an immediate reward R(st+1)
based on the results of that action. The goal is to find an
optimal policy π∗ that maximizes the discounted sum of
future rewards. We use model-free double deep Q-learning
[22] to learn a greedy deterministic policy that, given a state
st, selects the action at that maximizes the action-value
function Qπ(st, at).

A diagram describing the proposed architecture is shown
in Fig.3. The presented approach uses fully-convolutional
neural networks (FCNs) to model Q-functions that estimate

the expected reward for each action candidate given the
current observation ot, which represents the state st.

A. State Representation

In the proposed approach, the state st comes in the form
of a visual observation ot that is a visual representation
of the inside of the cabinet annotated with task-relevant
information. This observation is obtained by processing the
images recorded from a fixed-mount camera observing the
cabinet from the side. As discussed in other works [3], [16],
[23], providing the network with an abstract representation
rather than raw images can help learn policies that generalize
to different objects and settings. In fact, policies can learn
to exploit task-relevant information and features, such as the
object classes and the specific target region, omitting details
that are irrelevant to the task, such as background color,
lighting sources, and item texture.

In our approach, we feed the FCNs with both depth and
semantically annotated RGB data. The robot first captures an
RGB-D image from the front of the cabinet. By converting
this side-view image into a point cloud and projecting it onto
the horizontal plane, we create a heightmap or top-down view
of the inside of the cabinet (Fig. 3). The margins of the map
are preset to the dimensions of the cabinet, which is assumed
known a priori.

We assume that instance segmentation is applied to the
RGB image to detect and obtain the masks and classes for
all the visible objects and object parts. Instance segmentation
can be performed using state-of-the-art perception algorithms
such as [24], [25], which tackle unknown objects. In our
visual heightmap representation (Fig. 3), objects of the
same class share the same color, regardless of their real
appearance. The free and occluded spaces are represented
by white and grey-colored areas, respectively. Additionally,
visible sections of the cabinet corresponding to a target
location are colored based on the class of the object they
are meant to store. Note that we are assuming the perception
returns masks only for the visible regions of the objects. We
are not assuming to have access to amodal perception to infer
the entire geometry of occluded objects from partial views
[26], and no information is available for objects completely
occluded. The semantic top-down view in the form of an
RGB image is then concatenated with the single channel
depth image, where each pixel contains the height-from-
bottom value of the heightmap, to obtain the full visual
observation ot ∈ RH×W×4 that forms the input to the FCNs.

B. Primitive Actions

The action set Aρ is modeled using two parametrized
motion primitives, T (ρT) and P(ρP), where T is a pick-
and-place action, P is a linear pushing action, and ρi
represents the parameters for an action i.

In the following, we provide details on the action
parameters, and on the architecture of the FCNs that take
as input the visual observation ot and select the action
parameters.

1) Pushing:

Fig. 3: Proposed architecture: Given a side view of the environment acquired through an RGB-D sensor, we first transform
the visual observation of the inside of the cabinet to create a recolored orthographic view, highlighting the class membership
of each visible object and the area where the objects should be sorted. The heightmap is sent to two FCNs that generate
pixel-wise Q-maps corresponding to the expected rewards for taking a push or a pick-and-place action at each specific pixel.

Fig. 4: Architecture of the fully convolutional residual
network used to compute the Q-maps from the current
observation. Conv(k,i) denotes a convolutional layer with
k×k filters and i channels, RB(i) represents a residual block
composed of two convolutional layers with 3× 3 filters and
i channels.

a) Primitive definition: To model the pushing primitive
P , we follow Zeng et al. [27]. It is defined by ρP =
(xP , yP , θP). Here, (xP , yP) are the 2D coordinates of the
starting position of the tip of the pushing blade, expressed
relative to a local frame with the z-axis being normal to
the ground plane, the x-axis aligned with the cabinet’s depth
dimension and the y-axis aligned with the cabinet’s width
dimension. θP specifies the direction of the pushing action
also with respect to this local frame.

When executing this action, the robot first reaches the
point (0, yP) in front of the cabinet. Then it linearly
approaches the starting point inside the cabinet at the specific
depth xP and executes a straight pushing action of length
lp = 8cm at a constant distance of zp = 5cm from the bottom
of the cabinet to reduce the risk of toppling. This straight line
push is in the direction specified by θP . Afterward, it retracts
from the cabinet by reversing this trajectory.

b) Push-Net: The goal of the pushing network is
to derive the parameters of action ρp from the current
observation ot. The pushing network is composed of
an initial 7-layer fully convolutional residual network,
interleaved with three layers of spatial 2×2 max-pooling, that
takes as input the current observation and outputs a spatial
feature map. This map is fed as input to a second 7-layer fully
convolutional residual network (with three layers of spatial

Fig. 5: Different pushing directions are handled by rotating
the observation fed to the network. In this work we model
two pushing directions (left and right) corresponding to a
0 deg and a 180 deg rotation.

bilinear 2× upsampling) that outputs a dense pixel-wise map
of Q values with the same size as that of the original image
(see Fig 4).

As done in previous works [27], [28], different pushing
directions are handled by rotating the input image sent to
the network to obtain the corresponding Q-maps. This work
considers two directions modeling left and right pushing
actions, corresponding to a 0◦ and a 180◦ rotation of the
input image, respectively (see Figure 5). Rotations are done
with nearest-neighbor sampling to avoid blurring artifacts, as
well as 0-padding to maintain fixed image sizes.

The pixel with the highest predicted probability among
the two maps determines the parameters ρ∗P = (x∗, y∗, θ∗)
for the pushing primitive to be executed: the 2D location
of a pixel determines the pushing starting position, and the
orientation of the map determines the pushing direction.

2) Pick-and-Place:
a) Primitive definition: The action is specified by a pair

of 2D picking and placing poses T = {Tpick, Tplace}. Each
pose is parameterized by a vector ρi = (xi, yi) describing
the 2D positions of the tip of the pushing blade (equipped
with a suction cup) at the picking and releasing poses. These
poses are expressed relative to the same local frame as the
push primitive.

When executing this action, the robot first reaches the
point (0, ypick) in front of the cabinet, and then linearly
approaches the picking point inside the cabinet at the specific
depth xpick. Once the point is reached, the suction cup

Fig. 6: Procedure used to select the parameters of the pick-
and-place primitive. An FCN is used to determine the picking
pose from the current observation. The placement pose is
instead computed using a heuristic function based on the
class of the picked object and associated target region, as
well as the current state of the environment.

is activated if contact is detected, and the robot linearly
retracts from the cabinet and eventually reaches a specified
home configuration. If an object has been grasped, the robot
executes the motion to reach the placement position with the
same strategy.

b) Pick-Net: This network takes as input the visual
observation at time t and predicts the parameters ρT =
((xpick, ypick), (xplace, yplace)) = (ρpick, ρplace) for the pick and
place action T . We use a two-level approach: an FCN with
the structure shown in Fig. 4 outputs a dense pixel-wise map
of Q values of the same size as the original image. The pixel
with the highest value is used to select the parameters ρpick of
the picking primitives. The placing position is then selected
using a heuristic that depends on the class of the grasped
object (obtained from the color of the pixel selected by the
network) and the level of clutter. A placement pose will be
towards the back of the cabinet and close to the center of
the object’s target region, and does not obstruct objects of
different classes. An example is shown in Fig. 6.

C. Action Selection

At each time t, the two networks take as input the
current observation ot and return three Q-maps Q(ot, aρ)
corresponding to pick-and-place, left and right pushing,
respectively. The policy selects the action and corresponding
parameters with the highest Q value:

π(ot) = argmax
aρ∈Aρ

Q(ot, aρ). (1)

The action is executed by the robot and, after the execution,
it observes the scene again and the process is repeated until
the task is completed.

D. Training Details

1) Reward: The reward function is not overly shaped to
avoid predetermining the robot’s behavior:

RT (st+1) =


−10 if st+1 /∈ V,
0 if st+1 ∈ G,
−1 otherwise,

(2)

where we indicate with G and V the sets of goal states and
valid states, respectively. A generic valid state is defined as

a state where all the objects are placed stably inside the
confined environments. A constant negative reward of −1
is given for actions that do not immediately lead to a goal
state, a 0 reward for the action that solves the task, and an
additional negative reward of −10 if the action brings the
system into a non-valid state (e.g., some objects are dropped
off the cabinet).

2) Loss Function: Similar to [27], we train the two
networks using the Huber loss function

Li =


1
2δ

2
i , if |δi| < 1

|δi| −
1

2
, otherwise,

(3)

to minimize the temporal difference δi = Q(si, ai; θai)− yi,
where

yi =Rai(si+1) + γQ(si+1, argmax
a′

(Q(si+1, a
′; θa′)); θ

′
ai).

We use a double deep Q-learning framework to estimate
the Q-function, where θai and θ′ai are the parameters of
the primary FCN and the target network parameters for
action a at iteration i, respectively. The gradients are passed
only through the single pixel p and through the network
from which the value for action ai is computed. All other
pixels at iteration i backpropagate with 0 loss. At each
training iteration, the weights of the target network are
updated through Polyak averaging with rate β = 10−3:
θ′ai ← (1− β)θ′ai + βθai .

3) Data collection and training: We collect data in
Pybullet with a UR5 robot equipped with a pushing blade
(see Fig.7(a)). At the beginning of each episode, N objects
are randomly placed inside a simulated cabinet of dimensions
40cm×60cm×27cm, as in Fig.7(b). The objects are cuboids
and cylinders of random sizes. Each object is randomly
assigned one of three classes, and each class has a randomly
located target region.

A simulated camera acquires the observations and the
segmentation masks of the visible objects. We use green,
yellow, and blue pixels to represent the membership of each
object to one of the three classes in the recolored observation
input of the network. An episode ends when: 1) all the
objects are correctly sorted (Fig.7(c)); 2) an object falls out
of the cabinet; 3) the robot exceeds a maximum number of
actions. The collected observations, actions, and rewards are
saved into an experience replay buffer. During training, a
batch of size 32 is randomly sampled from the replay buffer
for training.

The networks are trained in PyTorch [29] with an NVIDIA
Quadro P5000 on an Intel Xeon CPU E5-2643 v4 clocked at
3.40GHz. We use the Adam optimizer with a fixed learning
rate of 10−4 and weight decay of 2 · 10−5. In this work, we
employed a constant future discount γ = 0.9. The learning
algorithm uses RL with a curriculum [30] that gradually
increases the number N of objects in the scene. We start
the learning with N = 1, and when the average success rate
over the last 50 episodes is over 90%, we increase N by one,
up to a maximum of 8 objects in the scene. For each stage of

Fig. 7: (a) A UR5 equipped with a pushing blade interacting with a simulated confined environment. (b) Example of an
initial arrangement for 10 objects and three different classes. Objects of the same color belong to the same class. The target
regions are shown only for clarity. (c) The robot manipulates the objects to bring them inside the assigned target regions.

Fig. 8: Hindsight Experience Replay: during training, the
robot executes an action at based on the current observation
ot, bringing the environment into a new state, corresponding
to observation ot+1. In this state, all the objects are inside
the three target regions but are not correctly sorted. Thus,
the misplaced objects are reassigned to a different class,
obtaining a new transition with two recolored observations
(o∗t and o∗t+1) and modified reward r∗t = 0. Both the
original transition and the relabeled one are inserted into
the experience replay buffer.

the curriculum, we use an ε-greedy exploration policy with
ε starting from 0.8 and then annealed over training to 0.01.

In addition, we use the hindsight experience replay (HER)
to deal with sparse rewards [31]. Indeed, while rearranging
the objects, the robot may bring the system to a state where
all the objects are inside the available target regions, but at
least one object is not in its assigned target region. This
condition would match a correctly sorted state if the classes
of some objects were different. To make sure that the agent
can learn from these situations as well, the objects are
reassigned post hoc to a different class so that this final
state corresponds to a sorted one and relabel the reward for
the transition leading to this state, as shown in Figure 8.
This single relabeled transition, composed of the recolored
observation, the action, and the modified reward, is then
included in the replay buffer for further training.

V. EXPERIMENTAL EVALUATION AND RESULTS

We evaluate the approach in simulation. The goal is to
assess whether the proposed approach is able to let the
robot learn efficient and nontrivial rearrangement strategies
in cluttered scenarios, and to understand how the pushing
actions influence the performance.

a) Baselines: To this end, the approach that uses both
pushing and pick-and-place using the suction cup (labeled as

Fig. 9: Objects used at test time for the experimental
evaluation of the algorithm.

P+S in the following) is compared with three baselines: 1) a
modified version of the proposed algorithm that uses only
pick-and-place actions by means of the suction cup (named
S) to solve the task; 2) a heuristic-based method (named
H-d), where the robot uses only pick-and-place actions, but
the parameters of the picking action are computed using a
simple heuristic that evaluates each pixel’s distance from the
target region and selects the pixel with the largest distance.
3) a heuristic-based method (named H-a), where the robot
exploits only pick-and-place actions, but uses a heuristic to
select the object to pick based on the distance from the target
region and the distance from the back of the cabinet. This
baseline favors objects that are in the front of the cabinet,
as they are generally more accessible and could potentially
occlude other objects.

b) Scenarios: We test these methods by executing a
series of sorting tasks with different numbers of objects, from
a minimum of 3 to a maximum of 14, that are randomly
placed inside the confined environment. The objects used for
the testing are a subset of the objects from the YCB dataset,
shown in Figure 9. The objects are characterized by different
shapes, texture, and dimensions, and have been chosen to
show that the proposed architecture can effectively generalize
to objects that vary in geometry and appearance, thanks to the
abstract representation of the camera observation described
in Section IV-A. For each number of objects N , we execute
100 runs. In each run, the N objects are sampled from the
set shown in Fig.9 so that at most three different types are
present.

c) Metrics: The method and the baselines are evaluated
according to three metrics: i) the average % success rate
(SR) over the 100 runs, where a success indicates that the
agent has been able to sort all the objects with less than 40
actions; ii) the average action efficiency (AE) for successful

(a) Success Rate (b) Action Efficiency (c) Modified Action Efficiency

Fig. 10: Results with different numbers of YCB objects from the testing set in random initial arrangements for the three
methods: P+S is our approach, S is a pick-and-place-only variant of our approach, and the two heuristic-based pick-and-place-
only baselines (H-d and H-a). Metrics: (a) average % success rate (SR), (b) average action efficiency (AE) for successful
runs: AE = #objects

#actions until completion , and (c) modified average action efficiency (mAE) for successful runs that considers the
number of objects to sort in the initial the arrangement: mAE = #objects to sort

#actions until completion . The plots report mean and standard
deviation computed over five different random seeds. For each number of objects N the policy has been rolled out for 100
random initial arrangements.

Fig. 11: Frames from the simulations for different number of YCB objects from the testing set in the scene. For each case,
we show the initial configuration of the objects (left) and the final rearranged state (right).

runs, measured as #objects
#actions until completion ; iii) the average of a

measure of the action efficiency modified to account for the
initial arrangement of the objects (mAE), where the number
of unsorted objects in the initial arrangement is considered
instead of the total number of objects. For all the metrics,
higher is better.

d) Results: The results are collected in Fig. 10, where,
for the three metrics, we report the mean and standard
deviation computed over 5 different random seeds. The
simple heuristic-based baseline H-d is effective with up
to five objects in the scene, but the performance drops
drastically with any additional number of objects. The
other heuristic-based baseline H-a performs better than H-d,
in general, but the performance degrades with more than
seven objects in the scene. In contrast, both P+S and S
maintain good performance in more cluttered settings. This
shows that, as expected, simple heuristics do not generalize
well to complex environments. Our approach instead learns
strategies that are effective even with levels of clutter not
seen during training, since the robot has been trained with at
most eight objects in the scene. However, the data reported
in Fig.10(a) shows that the success rate for both P+S and S
also degrades quite clearly as the number of objects increases
– although never as low as the heuristic baselines.

The main failure case is due to objects falling out of
the cabinet when the robot moves inside the confined
environment. The more clutter, the more likely this is to

happen. This often occurs when the robot retracts from
the cabinet after picking an object. Contact between the
picked object and other objects, or other indirect motion
in the scene, might lead to some objects falling. Since
every action is performed by the robot in open loop, the
current framework is not designed to identify and properly
react to these situations. These findings suggest that the
introduction of an online mechanism for detecting undesired
movements through, e.g., tactile sensing or visual feedback,
as well as introducing proper reactive strategies, can improve
performance in more cluttered environments.

It is worth noting that the proposed method with both
pushing and pick-and-place actions outperforms the baseline
using only pick-and-place. This seems to support the insight
that including more complex non-prehensile actions is
beneficial for this specific task. Regarding the efficiency of
the solutions found (Fig.10(b)-(c)), both the two learning-
based approaches perform better than the heuristic-based
ones, with P+S being slightly more efficient than S. A
possible explanation is that pushing actions allow moving
multiple objects at the same time, potentially reducing the
overall number of actions needed to reach a sorted state.

Eventually, Figure 12 shows the performance of the
proposed algorithm P+S when the policy is rolled out in
environments with objects sampled from the training set, i.e.,
simple cuboids and cylinders, compared to the performance
when using the YCB objects shown in Fig. 9. Note that

(a) Success Rate (b) Action Efficiency (c) Modified Action Efficiency

Fig. 12: Comparison of the performance of the proposed approach in environments with objects sampled from the training
set, cuboids and cylinders, or from the testing set composed of objects from the YCB dataset.

the algorithm does not experience a significant performance
reductions, demonstrating that with our representation of the
input the learned policy is able to generalize to objects not
seen during training. However, it is worth noting that most
objects from this YCB dataset are shaped like cylinders and
cuboids.

VI. CONCLUSION

In this work, we presented a data-driven approach to derive
rearrangement policies in confined spaces. We show that by
modeling the task as an end-to-end model-free reinforcement
learning problem, a robot can learn effective rearrangement
strategies in cluttered and confined environments. Future
work will evaluate the approach with real hardware to test
the method’s robustness to perception inaccuracies that can
cause noisy segmentation or incorrect object classifications.
Meanwhile, we will extend the method by learning directly
from experience the pushing length and the placement pose
instead of using hand-crafted heuristics. In addition, we will
explore the use of recurrent architectures to let the agent learn
from a history of observations and investigate closed-loop
execution of the motion primitives to increase the system’s
robustness.

REFERENCES

[1] M. Dogar et al., “A framework for push-grasping in clutter,” Robotics:
Science and systems VII, vol. 1, 2011.

[2] N. Kitaev et al., “Physics-based trajectory optimization for grasping
in cluttered environments,” in IEEE Int. Conf. Robot. Autom., 2015,
pp. 3102–3109.

[3] W. Bejjani et al., “Occlusion-aware search for object retrieval in
clutter,” in IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 4678–
4685.

[4] H. Huang et al., “Mechanical search on shelves using a novel
“bluction” tool,” in IEEE Int. Conf. Robot. Autom., 2022, pp. 6158–
6164.

[5] G. J. Pollayil et al., “Planning robotic manipulation with tight
environment constraints,” in IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2021, pp. 9385–9392.

[6] M. Stilman et al., “Planning among movable obstacles with artificial
constraints,” Int. J. Robot. Res., vol. 27, no. 11-12, pp. 1295–1307,
2008.

[7] K. Ren et al., “Rearrangement-based manipulation via kinodynamic
planning and dynamic planning horizons,” in IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2022, pp. 1145–1152.

[8] H. Zhu et al., “Strategy-based robotic item picking from shelves,” in
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 2263–2270.

[9] M. Costanzo et al., “Can robots refill a supermarket shelf?: Motion
planning and grasp control,” IEEE Robot. Autom. Mag., vol. 28, no. 2,
pp. 61–73, 2021.

[10] S. H. Cheong et al., “Where to relocate?: Object rearrangement inside
cluttered and confined environments for robotic manipulation,” in
IEEE Int. Conf. Robot. Autom., 2020, pp. 7791–7797.

[11] C. Nam et al., “Fast and resilient manipulation planning for object
retrieval in cluttered and confined environments,” IEEE Trans. Robot.,
vol. 37, no. 5, pp. 1539–1552, 2021.

[12] H. Huang et al., “Mechanical search on shelves using lateral access
x-ray,” in IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 2045–
2052.

[13] E. R. Vieira et al., “Persistent homology for effective non-prehensile
manipulation,” in IEEE Int. Conf. Robot. Autom., 2022, pp. 1918–
1924.

[14] D. Batra et al., “Rearrangement: A challenge for embodied ai,” arXiv
preprint arXiv:2011.01975, 2020.

[15] E. Huang et al., “Large-scale multi-object rearrangement,” in IEEE
Int. Conf. Robot. Autom., 2019, pp. 211–218.

[16] H. Song et al., “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” in IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2020, pp. 9433–9440.

[17] Z. Pan et al., “Decision making in joint push-grasp action space for
large-scale object sorting,” in IEEE Int. Conf. Robot. Autom., 2021,
pp. 6199–6205.

[18] A. H. Qureshi et al., “Nerp: Neural rearrangement planning for
unknown objects,” in Robotics: Science and Systems, 2021.

[19] A. Krontiris et al., “Dealing with difficult instances of object
rearrangement.” in Robotics: Science and Systems, vol. 1123, 2015.

[20] R. Wang et al., “Uniform object rearrangement: From complete
monotone primitives to efficient non-monotone informed search,” in
IEEE Int. Conf. Robot. Autom., 2021, pp. 6621–6627.

[21] ——, “Efficient and high-quality prehensile rearrangement in cluttered
and confined spaces,” in IEEE Int. Conf. Robot. Autom., 2022, pp.
1968–1975.

[22] K. He et al., “Deep residual learning for image recognition,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp.
770–778.

[23] W. Bejjani et al., “Learning physics-based manipulation in clutter:
Combining image-based generalization and look-ahead planning,” in
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 6562–6569.

[24] M. Danielczuk et al., “Segmenting unknown 3d objects from real depth
images using mask r-cnn trained on synthetic data,” in IEEE Int. Conf.
Robot. Autom., 2019.

[25] C. Xie et al., “Unseen object instance segmentation for robotic
environments,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1343–1359,
2021.

[26] S. Back et al., “Unseen object amodal instance segmentation via
hierarchical occlusion modeling,” in IEEE Int. Conf. Robot. Autom.,
2022, pp. 5085–5092.

[27] A. Zeng et al., “Learning synergies between pushing and grasping
with self-supervised deep reinforcement learning,” in IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2018, pp. 4238–4245.

[28] ——, “Tossingbot: Learning to throw arbitrary objects with residual
physics,” IEEE Trans. Robot., vol. 36, no. 4, pp. 1307–1319, 2020.

[29] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Adv. Neural. Inf. Process. Syst. Curran Associates,
Inc., 2019, pp. 8024–8035.

[30] Y. Bengio et al., “Curriculum learning,” in Int. Conf. Machine
Learning, 2009, pp. 41–48.

[31] M. Andrychowicz et al., “Hindsight experience replay,” Advances in
neural information processing systems, vol. 30, 2017.

	Introduction
	Related Works
	Manipulation in confined spaces
	Object rearrangement

	Problem Statement
	Proposed Approach
	State Representation
	Primitive Actions
	Pushing
	Pick-and-Place

	Action Selection
	Training Details
	Reward
	Loss Function
	Data collection and training

	Experimental Evaluation and Results
	Conclusion
	References

