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Abstract— The rise of collaborative robotics has offered new
opportunities for integrating automation into the factories,
allowing robots and humans to work side-by-side. However,
this close physical coexistence inevitably brings new con-
straints for ensuring safe human-robot cooperation. The current
paramount challenge is integrating human safety constraints
without compromising the robotic performance goals, which
require minimization of the task execution time alongside
ensuring its accomplishment. This paper proposes a novel
robot trajectory planning algorithm to produce minimum-
time yet safe motion plans along specified paths in shared
workspaces with humans. To this end, a safety module was used
to evaluate the safety of a time-optimal trajectory iteratively. A
safe replanning module was developed to optimally adapt the
generated trajectory online whenever the optimal plan violates
dynamically provided safety limits. In order to preserve perfor-
mance, a recovery trajectory planning algorithm was included
such that the robot is allowed to restore higher speed motions
as soon as the safety concern has been resolved. The proposed
solution’s effectiveness was evaluated both in simulations and
real experiments with two robotic manipulators.

I. INTRODUCTION

Recent years have seen an increased interest and effort

in developing robotic automation solutions for new market

areas, characterized by short product lifetimes and dynamic

production changeovers. These requirements drive technol-

ogy in the direction of scalable and flexible collaborative

robots, mostly working in shared environments alongside

humans [1]. Research on physical Human-Robot Interaction

(pHRI) has also received growing attention recently [2], [3]

to accelerate the employment of collaborative robots, espe-

cially in small and medium enterprises (SMEs). However,

one of the key elements hindering full exploitation of these

collaborative solutions is the difficulty of integrating human

safety requirements with classical production constraints,

e.g., high-speed operations, fast cycle time capabilities, and

path constraints [4].

Typically, production constraints are addressed by plan-

ning path-constrained, time-optimal motions considering lim-

its on actuator velocities, and accelerations using convex op-

timization techniques [5]. Such algorithms are mostly used as

off-line batch methods for programming the robot to move at
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its full dynamic capabilities. However, these solutions cannot

guarantee safety if the robot has to coexist with humans

in unstructured, shared environments. Hence, for developing

safe physical Human-Robot Collaboration (pHRC), beyond

production constraints, it is of high importance to ensure

human safety when robots operate in shared workspaces

where collisions may happen.

Human safety requirements during pHRC led to the de-

velopment of two main paradigms [6]: Speed and Separa-

tion Monitoring (SSM) [7], and Power and Force Limiting

(PFL) [8]. In the SSM, the relative distance and velocity

between the human and the robot are the main factors

influencing the robot speed limit, which should guarantee

a feasible complete stop before an impact can occur. On

the other side, the PFL allows non-zero velocity contacts

between the robot and the operator, as long as the energy

transferred by the impact is below a certain safety threshold.

PFL methods, such as, e.g., the Safe Motion Unit (SMU)

scheme proposed by Haddadin et al. [9], limit the robot

velocity to a safe level based on the robot dynamic properties

(i.e., reflected inertia, the geometry of potential collision

points and velocity) in addition to human injury database,

reducing the traumatic effects of possible contacts.

From the performance point of view, the SSM paradigm

may cause the robot to move unnecessarily slow or even

stay still when it drives closer to the human worker, thus

compromising productivity. Nevertheless, it allows the robot

to move at full speed for high separating distances. In con-

trast, since it does not consider the human-robot separating

distance, PFL could reduce the performance when the human

is far away from the robot or the robot moves away from the

operator [10]. However, it would allow higher speed motions

w.r.t. SSM methods in case of close proximity. While these

solutions can guarantee human safety, the development of

a strategy able to ensure a decent level of performance for

every possible situation is still an open problem. In this paper,

we propose a novel trajectory planning algorithm capable of

combining the benefits of both approaches to compute safe

trajectories without compromising productivity.

The contributions of the paper are as follows. With

the aim of maximizing the performance, we developed

an optimization-based trajectory planning framework imple-

mented in an iterative fashion to account for dynamic safety

constraints generated online based on information on the

human presence and motion provided by a perception system.

A convex formulation for the path-constrained minimum-

time trajectory planning problem with constraints on the



Fig. 1. Block diagram of the proposed discrete time fast and safe trajectory planning framework. At every cycle, based on the information about the
human position and speed and the current plan, safety is possibly ensured by replanning the time evolution of the robot motion along the path.

robot velocities, accelerations, torques, and jerk is presented.

This formulation considers jerk limits as hard constraints

while preserving the convexity of the problem. The problem

is solved to generate a reference minimum-time trajectory

for the robot and replan online the temporal profile of the

trajectory whenever the safety speed constraints are provided

to the planner.

The proposed formulation: i) is based on a general

framework, applicable to generic paths, robots, and human

trajectories; ii) adapts the temporal profile using a convex

optimization algorithm, considering the whole dynamics of

the robot and limits on the joints velocities, accelerations,

and jerk; iii) includes biomechanics injury database and the

actual robot’s inertial properties into planning, not relying on

conservative and simplified assumptions on robot motion and

geometries; iv) dynamically evaluates and enforces online the

safety constraints.

Furthermore, the proposed approach does not rely on

reactive control strategies or path replanning, allowing the

robot to safely adjust its motion while being consistent with

the assigned path. Indeed, as highlighted in [4], it might

not always be possible for the robot to modify its path,

e.g., in manufacturing environments. With respect to classic

velocity scaling solutions that solely rely on finding a scaling

coefficient δ for the robot speed (see, e.g., [4], [10]), the

proposed replanning approach based on convex optimization

techniques can offer guarantees on the feasibility of the

replanned trajectory, taking into account the robot actuation

limits.

The outline of the paper is as follows: Section II presents

the approach. Its effectiveness is evaluated through simula-

tions and real experiments with collaborative robotic manip-

ulators in a shared human-robot environment in Sections III

and IV, respectively. Section IV also includes a comparison

with a classic velocity scaling approach. Section V concludes

the paper highlighting future research directions.

II. PROPOSED SOLUTION

Our proposed planning framework has been designed to

comply at least with the following conditions: i) the robot

has no prior information about the current human position

and his intended motion trajectory; ii) if it is not endangering

any human, the robot should move at full speed; iii) the robot

Algorithm 1 Safe trajectory planning

Inputs: path q, horizon h, points of interest {POI}

1: {q∗, q̇∗} = timeoptimalPlan(q)
2: SAFE = TRUE
3: repeat
4: {q∗

hi
, q̇∗

h} = recHorizon(q∗, q̇∗, h)
5: {SAFE,v̄h,POI} = safetyEval(q∗

h , q̇
∗
h , {POI})

6: if SAFE then
7: sendtoRobot(q∗)
8: else
9: {q∗

S , q̇
∗
S} = safeReplan (q∗, v̄h,POI, {POI})

10: sendtoRobot(q∗
S)

11: {q∗, q̇∗} = perfRecover(q∗
S)

12: h = moveHorizon()
13: sleep until control period Tc has elapsed
14: until End of Task

motion should be adapted to respect rising safety constraints

due to the current environmental conditions, taking into ac-

counts the actuation capabilities and without deviating from

its path; iv) the robot should resume moving at its maximum

allowed speed as soon as the safety concerns are resolved.

Therefore, an iterative planning scheme was developed as

described by Algorithm 1, while a block scheme highlighting

its working principle is depicted in Fig. 1.

Given the desired path to be followed by the robot, first,

an initial time-optimal trajectory, considering only the robot

actuation limits and possible task-related constraints is gen-

erated (block Time-Optimal Planning in Fig. 1 and function

timeoptimalPlan in Algorithm 1). After that, the safety of

the generated time-optimal trajectory is assessed online by a

Safety Evaluation module (block Safety Evaluation in Fig. 1

and function safetyEval in Algorithm 1) that, based on the

robot planned trajectory and the human data from a visual

perception system, provides speed constraints for given point

of interests (POIs) along the robot structure. If the current

time-optimal trajectory violates some of these constraints, the

time evolution of the path is re-planned online by solving

a minimum-time path-constrained problem that takes into

account the safety constraints (block Safe Replanning in

Fig. 1 and function safeReplan in Algorithm 1).

Finally, the new trajectory is sent to the robot, while a

dedicated Performance Recovery module (function perfRe-

cover in Algorithm 1) is used to generate a new time-optimal

plan to be checked by the Safety Evaluation module, so as to



restore higher speed motions as soon as the safety concerns

are resolved.

In the following, a description of the design and working

principles of the main blocks of our framework is presented.

A. Minimum-Time Trajectory Planning

The problem of generating optimal trajectories along a

specified path can be efficiently tackled with state-of-the-

art methods in case of limits on the joint velocities, accel-

erations, and torques. These methods translate the optimal

control problem into a convex optimization problem [5].

However, in order to obtain smoother trajectories with less

demanding actuator commands, we also include constraints

on the jerk into the optimization problem1. The resulting

optimization problem is described in the following.

Given a task and the related joint-space path q ∈ R
n, it

can be typically represented by a function γ(s) ∈ R
n, where

s is a monotonically increasing scalar parameter s(t) ∈ [0, 1],
and n is equal to the number of joints of the robot (see e.g.

[12]). If we want to compute the trajectory that minimizes

the total time T needed for following the given path, it is

possible to write the following optimization problem

min
T,s( · )

T

{s(0), ṡ(0), s(T ), ṡ(T )} = {s0, ṡ0, sT , ṡT }
ṡ(t) ≥ 0

{q̇(t), q̈(s(t)), ...q(s(t)), τ (s(t))} ∈ Q(s(t))

for t ∈ [0, T ].

(1)

where Q(s(t)) is the constraint set for the joint velocities,

accelerations, jerks, and torques2. However, w.r.t. classical

torque-level formulations, by introducing jerk constraints, the

optimization problem is no longer convex [12].

Solving a non-convex problem is usually computationally

demanding, and the time needed for finding the optimal

solution makes it practically unfeasible to use this approach

for online trajectory planning. On the other hand, solutions

that try preserving the convexity by including jerk limits as

penalty terms into the objective functions, similar to what is

done in [5] for the torque rate, are able to reduce the jerk, but

can not limit it to a specific value. Thus, they are not able to

guarantee that the solution would not violate the jerk limits.

For these reasons, here we present a different formulation

for (1), which considers the jerk limits as hard constraints

while still preserving the problem’s convexity.

First, we reformulate Problem (1) defining the classic

change of variables b = ṡ2 and a = b′ = ∂b/∂s. Then, we

use direct transcription to numerically solve it. Therefore,

discretizing s with K + 1 grid points sk, the problem

of optimizing the motion of a robot moving along the

1Smooth trajectories with reduced jerk also have the nice feature of
increasing the operator’s acceptance of pHRC [11].

2The assigned joint space path can be obtained from the Cartesian path of
the end-effector using any classical inverse kinematics algorithm. Therefore,
any redundancy of the collaborative robot is not exploited while planning
the time-optimal motion, but possibly during the inverse kinematics stage.

discretized joint path can be written as

min
ak, bk

K−1
∑

k=0

2∆sk
√

bk+1 +
√
bk

(2a)

s.t. b0 = 0 and bK = 0, (2b)

(bk+1 − bk) = 2ak∆sk, (2c)

(bK − bK−1) = 2aK∆sK , (2d)

0 ≤ bk ≤ b̄k, (2e)

¯
yk ≤ fkak + pkbk ≤ ȳk, (2f)

¯
yK ≤ fKaK + pKbK ≤ ȳK), (2g)

¯

...
qk ≤ ...

qk ≤ .̄..
qk, (2h)

for k = 0, . . . ,K − 1, (2i)

where we omit the dependency on s for the sake of clarity.

We assumed b and a to be piecewise linear and piecewise

constant, respectively, as in [5]. Additionally, q′ = ∂q/∂s,

q′′ = ∂2q/∂s2, ∆sk = sk+1 − sk,
.̄..
q and

¯

...
q are the upper

and lower bounds for the jerk, respectively, and

fk =
[

mk
T q′

k

T

]T

, pk =
[

cTk q′′
k

T

]T

,

ȳk =
[

(τ̄ k−gk)
T ¯̈qk

T

]T

,
¯
yk =

[

(
¯
τ k−gk)

T

¯

q̈
k

T

]T

,

where τ̄ k, ¯̈qk,
¯
τ k, and

¯

q̈
k

are the upper and lower bounds

for the joint torques and accelerations, respectively. For a

formal definition of the vectors m, c, and g the interested

reader can refer to [5]. From (2), the jerk
...
qk can be written

using finite difference approximation

...
qk ≈ q̈k+1 − q̈k

∆tk
= (

√

bk+1 +
√

bk)
q̈k+1 − q̈k

2∆sk
. (3)

As expected, using this formulation constraints (2h) are non-

convex. However, it is possible to substitute
...
qk with the

following upper bound

...
qws,k =

(

√

b̄k+1 +
√

b̄k

)

q̈k+1 − q̈k

2∆sk
(4)

where we replaced bk and bk+1 with their upper bounds.

In practice, we substituted ∆tk with its minimum value,

constraining the worst-case jerk. Therefore, using this convex

approximation for the constraints (2h), we obtain the convex

problem

min
ak, bk

K−1
∑

k=0

2∆sk
√

bk+1 +
√
bk

(5a)

s.t. (2b) − (2g), (5b)

¯

...
q
k
≤

(

√

b̄k+1 +
√

b̄k

)

q̈k+1 − q̈k

2∆sk
≤ .̄..

qk, (5c)

for k = 0, . . . ,K − 1. (5d)

Note that the solution of Problem (5) is still feasible for the

original problem (1), since its feasible set is a subset of that

of (1). More details about the computational advantages and

the optimality of the solution for this convex reformulation

of the problem are reported in the Appendix.



Fig. 2. The Safe Motion Unit (SMU) pipeline. This injury biomechanics-
based approach ensures human safety for robot manipulators during pHRI.

B. Safety Evaluation

For the safety evaluation, we exploit a unified safety

framework that relies on biomechanical injury information

to ensure the human coworker safety in case of collision,

the safe motion unit (SMU) [9]. The considered interac-

tion/collision model, following the approach introduced in

[9] and further elaborated in [13], focuses on capturing the

instantaneous contact dynamics between two colliding ob-

jects. Using a scalar mass and its velocity (together with the

curvature at impact/contact location), the energy exchange

between the robot (possibly with additional payload) and an

impacted human can be summarized in terms of the reflected

robot dynamics along the chosen motion direction [14].

The SMU provides the velocity limits which guarantee that

the traumatic effects of every possible contact phase may

not exceed a certain level of minor injury (e. g. a bruise,

contusion) or, more strictly, even no injury at all [9]. As

for the case of robots with sharp tools, integrating effective

physical collision detection and reaction schemes [15], it was

proved in [16] that equipping robot holding a knife with a

sensitive collision detection and effective stopping strategy

can protect the human from incised wounds at velocities

up to 0.75m/s. The maximum braking distance for a robot

handling sharp tools could be set using penetration depth as

a severity index for possible human contacts. Accordingly,

velocity limits for such tasks can also be imposed and

integrated under the SMU framework [16].

To ensure human safety by robot velocity control, the

robot reflected mass is evaluated in certain motion direction

at a number of points of interest (POIs) along the robot

structure. The curvature at these possible impact locations

is encoded together with biomechanical injury information

against the robot reflected mass and Cartesian velocity. Given

the reflected mass in the current robot configuration and

along its motion direction, a maximum safe relative speed

can be evaluated from the corresponding safety curve. This

upper relative speed limit can be calculated from a simple

linear regression relationship

vmax(m) = reg . lim [c1 (i,pi)m+ c2 (i,pi) , v1, v2] , (6)

with c1(i,pi) < 0 and c2(i,pi) > 0 being the coefficients

of the delimiting safety/injury curves for contact surface

primitive i, m the reflected mass, and v1, v2 denoting the

limits for cut-off minimum and maximum velocity. The

contact primitive captures the geometrical information at

the impact location, which is a key factor regarding how

much energy is transferred to the impacted human tissue

and the possible resulting injury. The complete detailed SMU

Algorithm 2 Safety Evaluation Module

safetyEval(q∗
h , q̇

∗
h , {POI})

1: SAFE = TRUE
2: v̄POI = ∅
3: {p, ṗ} = getPersonData()
4: if p 6= ∅ then
5: return SAFE, v̄POI

6: for POI ∈ {POI} do
7: for {q, q̇} ∈ {q∗

h, q̇
∗
h} do

8: d = getDistance(p, POI)
9: if d ≤ th then

10: vPOI = getPOIvelocity(q, q̇, POI)
11: m = getReflectedMass(q, POI,p, ṗ)
12: vmax = SMU(m)
13: v̄POI.insert(vmax)
14: if vmax < |vPOI| then
15: SAFE = FALSE
16: v̄{POI}.insert(v̄POI)

17: return SAFE, v̄{POI}

algorithm can be found in [9], while a diagram summarizing

the working principles of the SMU is reported in Fig.2.

Some background information on the dynamic model used to

characterize the collisions/interactions and the computation

of the reflected mass are reported in the Appendix. The SMU

is the core of our Safety Evaluation module, implemented

in a receding horizon fashion. The working principle of this

module is described by Algorithm 2. Given the list of robot

POIs {POI}, at every control cycle, the SMU is used to

evaluate the safety of the planned trajectory over a user-

defined monitoring time-horizon. By evaluating the safety of

only a part of the trajectory, we reduce the computational

burden of performing at each time step the evaluation for

the complete path (even for points distant in time), given the

current position of the person. On the other hand, deriving

the safety constraints for the trajectory over a horizon instead

of just the next point to send might possibly allow the robot

to be more reactive, adapting its trajectory more smoothly

and avoiding sudden (and possibly unfeasible) decelerations.

At each time step, the safety module receives the next joint

positions and velocities of the trajectory within a horizon h.

Then, it acquires information on the human presence from

the perception system (function getPersonData in Algorithm

2). If no human is detected, the trajectory over the horizon

is labelled as SAFE. If a person is detected, instead, it

computes the maximum speed vmax for each trajectory

point over the monitoring horizon and for each robot POI

contained into the POI list {POI}, using (6). To reduce

the computational burden and avoid risks of unnecessary

performance reductions, we introduced a safety threshold for

the relative robot POI-human distance d. Indeed, if the person

is not relatively close to the robot POI, it is not necessary

to activate the SMU, and the maximum speed is set to the

actual robot POI speed |vPOI |. These safe values are then

compared with the actual POI speed and, if for at least one

robot POI and at least one trajectory point the safe value

is below the actual speed, the planned trajectory is labelled

as not safe, and sent to the Safe Replanning module for

generating a new plan compliant with the new safety limits.



C. Time-Optimal Safe Replanning

The output of our safety module is a vector containing

the maximum velocities for the robot POIs, computed on

the given horizon h. In case the trajectory is not safe, it is

necessary to adapt it to be compliant with the new limits.

We designed a safe replanning module that, based on the

same convex optimization approach presented in Section II-

A, computes an optimal trajectory compliant with the safety

limits, the robot actuation capabilities, and the task-related

constraints. The trajectory is replanned using the following

modified version of Problem (5)

min
ak, bk

L−1
∑

k=0

2∆sk
√

bk+1 +
√
bk

(7a)

s.t. b0 = ṡ20 and bL = 0, (7b)

(2c) − (2d), (7c)

0 ≤ bk ≤ b̄S(sk), (7d)

(2f) − (2h), (7e)

for k = 0, . . . , L− 1, (7f)

where L is the length of the remaining part of the path

q, ṡ0 is the current initial condition for the robot path

velocity, and b̄S are the safe-consistent speed constraints.

The advantage of this formulation, w.r.t. less computational

demanding velocity scaling techniques, is that the safe

replanning is guaranteed to generate a feasible and safe

trajectory compliant with the robot actuation capabilities and

the task constraints.

It is worth noting that Problem (7) with the safety

constraints is still convex, since the speed constraints are

embedded into the upper bounds on the variable b. For each

value in v̄h,POI , the constraints can be expressed as

|Jvq̇| ≤ |v̄h,POI| ↔ (Jvq̇)
2 ≤ (v̄h,POI)

2 ↔

↔
(

Jvq
′
)2

b ≤ (v̄h,POI)
2 ↔ b ≤

(v̄h,POI)
2

(Jvq
′)

2
,

(8)

where Jv is the Jacobian matrix for linear motions associated

with the robot POI, and where we exploited the equality q̇ =
q′
√
b. Thus, the constraints on vhi,POI can be rewritten into

the form b ≤ b̄S, directly acting as upper bounds on b. Even

for the case of multiple robot POIs, it is sufficient to consider

only the most restrictive upper bound for each s over the

monitoring horizon b̄S(s) = min{b̄(s),min{POI}(
v̄hi,POI

Jvq
′(s)

)2},

while b̄S(s) = b̄(s) for the points outside the horizon.

D. Performance Recovery

Once the new plan has been obtained, the next point of

the trajectory q∗S is sent to the robot and the monitoring

window is shifted ahead to the next point. However, before

providing the Safety Evaluation module the next horizon, a

Performance Recovery procedure is performed to compute

a new optimal trajectory that does not consider safety speed

constraints. This is achieved by solving an optimization

problem with the same structure as Problem (5), optimizing

over the path q∗
S, with consistent initial conditions. The new

optimal trajectory is then provided as the input of the Safety

Module. The aim of this recovery procedure is to give to the

Safety Evaluation module the fastest dynamically consistent

trajectory at every cycle. Therefore, we are able to restore

high-speed motions as soon as the safety issue that triggered

the safe replanning has been resolved, or to evaluate the

safety limits over the fastest dynamically possible trajectory.

We will show with simulations that, without the performance

recovery, the planned trajectory might turn out to be unneces-

sarily conservative and the performance of the robotic system

can be enhanced using the recovery action.

E. Considerations on replanning and path constraints

The proposed method allows regulating the motion of

the robot while maintaining path-consistency since it is

not always possible to arbitrarily relax or modify the path

without violating some of the production constraints [4].

In addition, limiting the robot to follow a fixed path can

increase the predictability and legibility of the motion, with

beneficial effects on safety and comfort perceived by the

human operator [17]. However, it might reduce performance

in specific conditions, e.g., a human operator standing along

the path. The robot would reduce its speed as long as it

moves toward the human. With our framework, the robot

would let the human resolve the conflict by, e.g., moving

away. However, a more proactive policy might be possible,

with the robot replanning its path in the case of prolonged

idle times. Nevertheless, such a proactive approach should

be carefully designed to generate acceptable, efficient, and

predictable motions and paths.

III. SIMULATIONS

In this section, the effectiveness of our proposed frame-

work is assessed through simulations. The robot employed is

a Franka Emika Panda manipulatorequipped with a Pisa/IIT

SoftHand as end-effector. The task assigned to the robot is

to follow a circular trajectory. We simulate the presence

of a human operator in the robot workspace, following

an assigned trajectory p(t). For the simulated case, only

one robot POI, placed at the center of the SoftHand, is

considered, while the safety curves used by the SMU encode

exemplary injury/safety information of collision incidents

against the human chest. The robot motion along the speci-

fied circular path is planned using four different approaches,

whose performance in terms of safety and trajectory times

are then compared and discussed. For all the experiments, the

simulated human worker follows the same trajectory p(t).
Note that the trajectory followed by the human is not known

in advanced by the robot, but we assume that a perception

system can provide the actual human data at every cycle.

For the limits on the robot velocity, acceleration, and jerk,

we used the nominal values provided by Franka3.

In the first scenario, named Time-Optimal, the motion of

the robot is planned to fully exploit its actuation capabil-

ities, solving the minimum-time optimization problem (5)

presented in Sec.II-A. The safety module evaluates the safety

3https://frankaemika.github.io/docs/control parameters.html

https://frankaemika.github.io/docs/control_parameters.html


Time-Optimal Conservative Replanning w/o recovery Replanning w/ recovery

1.86 s 8.09 s 3.61 s 2.93 s

Not Safe Safe Safe Safe

Fig. 3. For each column, from top to bottom: visualization of the trajectory of both the POI and the person; plot of the planned module of the POI speed,
solid line, and the corresponding safety limit computed by the SMU, dashed line (red area corresponds to violated safety constraints); time evolution of
the relative POI-Human distance, solid line, and the corresponding safety threshold, dashed line.

of the optimal plan, neglecting the online safe-replanning.

The proposed scenario has been chosen to highlight as the

time-optimal trajectory can violate the safety constraints.

The second method, named Conservative, solves the same

minimum-time optimization problem as in the time-optimal

approach, but the limits on the joint velocities have been

scaled to the point at which the planned trajectory is consid-

ered safe by the safety module. This scenario is instrumental

for comparison of a safe but conservative trajectory.

The third method, named Replanning without Recovery,

uses our proposed approach, but without using the perfor-

mance recovery step. In contrast, the fourth method, named

Replanning with Recovery, uses our proposed approach with

the inclusion of the performance recovery step.

For the third and fourth methods, the planning loop runs at

25Hz, the monitoring horizon length has been set to 0.32 s,
and the safety threshold for the robot POI-human distance

has been set to 1m. For all the four cases, the optimization

problems presented in Sec.II have been implemented in

C++ using CasADI [18] and the NLPs have been solved

by the interior point solver IPOPT [19] with ma57-HSL

linear solver4. The results of the simulations for the four

scenarios, in terms of trajectory, speed of the robot POI,

safe speed computed by the SMU, and relative robot POI-

human distance are reported in Fig. 3. The total trajectory

time and the safety of the planned trajectories as evaluated by

the Safety Module are also shown. We recall that a plan is

considered to be unsafe if, for at least one trajectory point,

the speed of the robot POI is greater than the safe speed

maximum limit.

As expected, the motion planned using the Time-Optimal

approach is the fastest but turns out to be not safe since we

do not consider the human presence. Indeed, there are two

4”HSL. A collection of Fortran codes for large scale scientific computa-
tion. http://www.hsl.rl.ac.uk/”

intervals, highlighted in red in the first column of Fig. 3,

where the planned robot POI speed is greater than the safe

one. It is worth noting that, even if the relative robot POI-

human distance is always below the 1 meter safety thresh-

old, there are intervals where the time-optimal trajectory is

still safe (highlighted in green), due to the non-conflicting

direction of motion between the robot and the human. On

the other hand, the motion planned using the Conservative

approach is able to ensure safety but at the expense of a

larger total trajectory time (see second column of Fig. 3).

Indeed, to obtain a safe trajectory without using any online

replanning strategy, we needed to scale speed limits by six

times. Our approach, instead, can overcome those issues,

thanks to the safe replanning strategy implemented. With

and without the recovery action, the total time is higher than

the one obtained with the Time-Optimal strategy, but the

trajectory is considerably faster than the one provided by

the Conservative approach (see third and fourth column of

Fig. 3). It is worth noting as the presence of the performance

recovery stage allows the robot to increase the performance

further, reducing the time needed to complete the task by

about 18%, while ensuring safety. Clearly, the computational

effort increases since we need to solve two optimization

problems at every cycle, and the safe replanning is expected

to be activated more often.

IV. EXPERIMENTAL VALIDATION

a) Unwrapping Task: Our approach has also been eval-

uated experimentally on a scenario relevant to intralogistics,

i.e., an autonomous single-object unwrapping task.

We used a fixed-base autonomous unwrapping robot, com-

posed of a Franka Emika Panda arm with a custom-designed

cutting end-effector: a concealed round actuated blade pre-

sented in [20]. The robot has to perform an unwrapping task

on a single object brought to the cutting station by a human

http://www.hsl.rl.ac.uk/


Fig. 4. Trajectory without (top) and with (bottom) the human operator.

Fig. 5. Example of human body keypoints detection using OpenPose and
corresponding 3D position of the chest.

operator. First, the robot moves from the homing position,

see Fig. 4, near the object to unwrap. The second phase is the

actual cutting action, where the robot moves slowly to avoid

damaging the object and ensuring the film engagement.

We tested two cases: one with a human operator standing

near the object, the other without close proximity. We

considered only one robot POI, on the cutting end-effector,

and the safety curves used by the SMU are again related

to exemplary collision outcomes with the human chest. The

human perception model used for the experiment is based

on OpenPose [21], a real-time multi-person visual percep-

tion software to detect human body, hand, facial, and foot

keypoints. We used OpenPose together with a depth camera,

an Intel® Realsense™ D415, to extract the coordinates of the

human keypoints and then of the chest5. An example of the

human keypoints detected by OpenPose and the extracted

3D position of the chest is reported in Fig. 5. The planning

algorithm runs at 25Hz, with a monitoring horizon of 0.12 s
and a safety threshold of 0.6m.

In Fig. 6 are reported the speed profiles for the robot POI.

Table I reports the time for the whole trajectory and the two

task phases. As shown in Fig. 6 (area highlighted in cyan),

the presence of the human operator triggers the activation of

the safe replanning, reducing the robot POI speed during the

approach phase. On the other hand, if there is no person our

planning method allows maximizing the performance, thanks

to the time-optimal planning module used to generate the

initial plan.

b) Comparison with a velocity scaling approach: We

compared our method with a velocity scaling approach

(VS in the following). In VS, the time-optimal replanning

procedure presented in Sec.II-C is replaced by a module

that, at each iteration, given the planned velocity q̇ and the

safe maximum velocities for the POIs returned by the SMU,

generates a scaled velocity q̇S = δq̇, δ ∈ [0, 1]. The scaling

factor is computed as δ = min{POI} ‖v̄‖POI/ ‖Jvq̇‖, where

Jv is the Jacobian matrix for linear motions associated with

5OpenPose might allow retrieving the position of body parts other than
the chest. Provided that suitable injury data for different body parts are
available, the SMU could compute the safe speed based on the closest body
part to the robot.

Total Time Approach Time Cutting Time

Without Person 8.22 s 2.22 s 6.00 s

With Person 10.54 s 4.54 s 6.00 s

TABLE I

DURATION OF THE TRAJECTORY AND THE TWO PHASES OF THE TASK.

Fig. 6. Speed profile for the robot POI when the person is present (green
solid line) and when is not present (red dashed line). The area highlighted
represents the interval where the safe replanning procedure is performed.

the robot POI. We performed 80 tests (8 trajectories, 5 tests

each for the two methods for each trajectory) with a Franka

Emika Panda arm and a Universal Robot UR10e manipulator.

Figure 7 shows examples of the trajectories and human

motions recorded during the experiments. We considered

one robot POI at the end of the last link and safety curves

related to collision outcomes with the human chest. The

human perception, based on OpenPose, runs at 15Hz and

the planning loop runs at 40Hz with a monitoring horizon

of 25ms. The safety threshold is set to 1m. The following

table summarizes the results, reporting the percentage of

completed tests, the average and the standard deviation of

the human-POI distance, and the average velocity of the POI

along the impact direction (only positive values):

Completed d̄HPOI σdHPOI
v̄imp

Our Approach 100% 1.12m 0.38m 0.47m/s

VS 82.5% 1.08m 0.43m 0.41m/s

It can be noted as, whilst our approach succeeded in

completing all trajectories, using VS resulted in failures in

some cases. These failures are due to unfeasible decelerations

commanded to the robot when simply scaling the velocity

to the safe value. In fact, VS does not consider limits

actuation capabilities. Hence, unlike our solution, it can not

guarantee the feasibility of the scaled trajectory. Figure 8

shows the impact velocities and the relative human-POI

distances registered during the experiments. Both approaches

allow reducing the POI speed when the relative distance is

less than the safety threshold and the robot is approaching

the human (red area in Fig.8). In all other cases, instead,

higher speeds are allowed since they are not a concern for

safety. Examples of the behavior of the robots using the two

methods with different human motions are collected into the

video available in the attached multimedia material.

V. CONCLUSION

In this paper, we presented a trajectory planning algorithm

to plan fast and safe motions for collaborative robots in

shared environments. The algorithm is based on an iterative

procedure that can ensure the nearby human safety by re-



Fig. 7. Examples of trajectories and human motions.

Fig. 8. Impact velocities and human-POI distances. Left: our approach;
right: VS.

planning online the time evolution of the motion of the robot

along the path based on the human data. The simulations and

experimental validation have shown the effectiveness of the

approach in producing safe but still efficient trajectories for

the robot. Future works will focus on testing the performance

in case multiple robot POIs and human body parts are used

by the SMU when computing the safety constraints.

APPENDIX

a) Convex jerk-limited planning: We performed simu-

lations solving both Problem (2) and (5) for a set of random

trajectories using a Franka Emika Panda arm. Each trajectory

has been discretized using 200 grid points for the path

variable s. The problems have been implemented in Matlab

using CasADI with the ma57-HSL linear solver for IPOPT,

and with the same initial conditions. The following table

reports statistics on the solutions to the problems and the

solving times

¯̂...
qNC

¯̂...
qC

¯∆topt t̄NC
IPOPT

t̄C
IPOPT

1.00 0.99 5.72% 1128.4 ms 82.23 ms

The superscripts NC and C denote the results for problem

(2) and (5), respectively,
.̂..
q is the normalized peak for the

jerk signal, i.e.,
.̂..
q = maxi{|...qi[tk]|/

.̄..
qi}, and

¯̂...q represents the

average over the different trajectories of the normalized peak

for the jerk. The values t̄NC
IPOPT , t̄CIPOPT , are the average

time for IPOPT to solve Problem (2) and (5), respectively,

and ¯∆topt is the average difference between the optimal

times, computed as tCopt − tNC
opt . The solutions for (5) are

suboptimal, but the problem is much faster to be solved,

with an average time-reduction of around 93%.

b) Reflected mass computation: The rigid robot dy-

namic model can be expressed as M(q)q̈ + C(q, q̇)q̇ +
g(q) = τ +τ ext, where q ∈ R

n are the generalized link co-

ordinates, M(q) ∈ R
n×n is the symmetric, positive definite

mass matrix, C(q, q̇) ∈ R
n×n is the Coriolis and centrifugal

matrix, and g(q) ∈ R
n is the gravity torque vector [22].

The joint torques and the external torques are denoted by

τ ∈ R
n and τ ext ∈ R

n, respectively.The so-called reflected

mass is the scalar mass perceived at the manipulator end-

effector along certain motion direction during an impact

with the robot [23]. It can be calculated in a normalized

Cartesian direction u ∈ R
3 as mu(q) =

[

uT
Λ

−1
v (q)u

]−1
,

where Λ
−1
v (q) is the translational pseudo kinetic energy

matrix that can be extracted from the partitioned inverse of

the kinetic energy matrix [23].
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